SURVEY OF INDIA

GEODETIC REPORT 1940

COMPILED AT THE WAR SURVEY RESEARCH INSTITUTE AND

PRINTED AT THE OFFICE OF THE GEODETIC BRANCH, 1945

Price Two Rupees, or Three Shillings
(Copyright reserved)

SURVEY OF INDIA

GEODETIC REPORT
 1940

PUBLISHED BY ORDER OF THE SURVEYOR GENERAL OF INDIA

COMPIIED AT THE WAR SURVEY RESEARCH INSTITUTE AND

PRINTED AT THE OFFICE OF THE GEODETIC BRANCH.

CONTENTS

Page
Introduction 1
Chapter I
Levelling
Para

1. Summary 3
2. Balasore to Bhadrakh and Sambalpur to Bhadrakh. 3
3. Cuttack to Vizianagram 3
4. Sohela to Sambalpur, Raipur to Pithora and Bhad- rakh to Cuttack 4
5. Probable errors 4
6. Progress of the new level net 4
Chapter II
Deviation of the Vertical
7. Summary 14
8. Details of observation 14
9. Narrative of season's work 14
10. Personal equation 15
11. Probable errors 15
12. Laplace stations 15
13. Geoidal section 15
Chapter III
Gravity
14. Summary 26
15. Narrative 26
16. Observations at Dehra Dūn 26
17. Differences in times of vibration 26
18. Values of g 27
19. Anomalies 27

Chapter IV

Computing Office and Observatories

COMPUTING OFFICE

Para Page
20. General 32
21. Hayford anomalies 32
22. Gravity anomalies for the Burma Oil Company 32
23. Lambert Conical Orthomorphic Projection Tables 32
24. Plumb-line Deflections in N.W. India, the Punjab and Punjab States 32
observatories
25. Latitude variation 32
26. Miscellaneous 32
Charts
Chart I Lines of Precise Levelling and Tidal Stations 3
II Latitude Stations 14
,, III Longitude Stations 14
,, IV Deflection Stations 15
,, V Pendulum Stations 26
" VI Gravity Anomalies (Hayford), contours show- ing $g-\gamma_{C H}$ 31
VII Gravity Anomalies (Hayford), contours show- ing $g-\gamma_{\mathrm{CI}}$ 31
VIII Normal warp anomalies 31
IX Crustal structure lines 31

INTRODUCTION

The publication of this volume during the war has been decided on as a special measure in consideration of the fact that the work described completes the geodetic programme arranged before the outbreak of war. It includes work up to January 1941. The work belongs to the pre-war period and is followed by a break in geodetic activities already lasting nearly 4 years.

The volume has been kept down to the smallest practicable dimensions in view of paper economy and the pressure of publication work. This accounts for omission of the ordinary Introductory Notes and list of Sales Agents and also of the list of Survey of India Publications: all of which can be found in earlier volumes of the "Geodetic Reports".

This volume has been compiled in the War Survey Research Institute which, since its formation in August 1943, has been responsible for any geodetic matters. Mr. Gulatee has written up the materials derived from the observers concerned. While Brigadier Glennie has seen and commented on the gravity results, it has not been possible for him or anyone in the War Survey Research Institute to enter into a detailed discussion of them. In the same way, the results of Deviations of the Vertical are given without full discussion ; and drawing of the geoidal contours (vide Chapter II, para 13) has been deferred.

Variation of latitude observations were made at Dehra Dūn for the 3 year period $1930-33$ and yielded an unexpectedly large amplitude of variations, not in sympathy with the results of the International Latitude Variation stations. As it was conjectured that this might be due to local peculiarities of the isopyenic surfaces in the Dūn valley between the Siwaliks and the outer Himalayas, it was decided to make further observations at Agra. This was carried out and results for the years 1937-40 at Agra are now published (Chapter IV, para 25). These have not been analysed, but they show the same unusually large amplitude of about one second as found previously at Dehra Dūn.

PERSONNEL* OF THE GEODETIC BRANCH 1939-40

Director, Geodetic Branch
Colonel E. A. Glennie, d.s.o., r.e.

OFFICE OF THE DIRECTOR, GEODETIC BRANCH

Ministerial Service

Head Assistant
Mr. Dalip Singh Bagdwal

Assistants
Mr. Manindra Mohan Barary
Head Accountant
22 Clerks.

General Central Class I Service
Mr. B. L. Gulatee, m.A. (Cantab.), Mathematical Adviser
COMPUTING AND TIDAL PARTY
(Regords and Researoh)

Class I Service
Major G. Bomford, r.e., in charge to 6th March 1940.
Captain C. A. Biddle, r.E., in charge from 7th March 1940.

Observatory Section
Magnetic Observer
Mr. Shyam Narain, b.sc.
Upper Subordinate Service
Mr. J. B. Mathur to 24th January 1040 and from 6th March 1940.

Lower Subordinate Service
4 Computers.

> Tidal Section Upper Subordinate Service

Mr. H. C. Banerjea, b.A. (Tidal Assistant).
Lower Subordinate Service
5 Computers.

Computing Seotion
Upper Subordinate Service
Mr. H. C. Deva, b.A., (Head Computer)
Mr. Mobammad Faizul Hasan.
Mr. C. B. Madan, b.a.
Mr. A. N. Ramanathan, M.A.
Lower Subordinate Service
14 Computers.
1 Leveller.
1 Librarian.
Service on deputation (from Burma Oil Co.) 1 officer from 12th February, 1940; and 2 offioers from May 1940.

Ceart Sifotion
(Administered by O.C. 2 D.O.)
Lower Subordinate Service
4 Draftsmen.

No. 14 PARTY (GEOPHYSICAL)

Class 1 Service
Captain C. A. Biddle, r.e., in charge. Class II Service

Mr. M. N. A. Hashmie, B.A., from 1st November 1939 to 17th March 1940.
Mr. P.S.Shinghel, o.E.

No. 15 PARTY (TRIANGULATION AND LEVELLING)
 Class I Service
 Upper Subordinate Service

Colonel E. A. Glennie, d.s.o., R.E., in charge. Chass II Service
Mr. Jugal Behari Lal.

Mr. A. A.S. Matlub Ahmad.
Mr. Muht. Z. A. Qureshi from 9th October 1939 to 7th May 1940.

Lower Subordinate Service
3 Computers.
2 Clerke.

[^0]

Chapter I

LEVELLING

by Mr. B. L. Gulatee, m.a. (Cantab.)

I. Summary.-The following programme was carried out by two levelling Detachments in 1939-40:-
(i) High precision levelling from Balasore (Orissa) to Bhadrakh (Orissa) ; and from Sambalpur (C.P.) to Bhadrakh (Orissa).
(ii) High precision levelling from Cuttack (Orissa) to Vizianagram (Madras).

In 1940-41 one Detachment was sent to complete the remaining portions of lines 117 and 125 in the back direction. It carried out
(i) H.P. levelling from Raipur (C.P.) to Pithora (C.P.) and Sohela (C.P.) to Sambalpur (C.P.).
(ii) H.P. levelling from Bhadrakh (Orissa) to Cuttack (Orissa).

The total out-turn of levelling was:-

	$1939-40$	$1940-41$
High precision levelling in back direction	530 miles	176 miles
	$(643$ gross $)$	$(187$ gross $)$

2. Balasore to Bhadrakh and Sambalpur to Bhadrakh.No. 1 Detachment under Mr. A.A.S. Matlub Ahmad started work at Balasore on 6th November 1939 and carried out back levelling thence to Bhadrakh. This line forms part of line 121 (of the new level net) and follows the Orissa Trunk road.

After completing this line, the Detachment started work on 2nd December, 1939 in the back direction from Bhadrakh to Sambalpur. This line forms part of line 117 of the new level net, and proceeds along the road from Sambalpur up to Pāl Lahara via Deogarh, thence along mule path up to Keonjhargarh, thence along Jājpur R.S. road up to Ghasipara (Anandpur), thence along road to Bhadrakh.

The Detachment completed field work on 25th April, 1940.
3. Cuttack to Vizianagram.-The observations in the back direction of the line Vizianagram to Cuttack were undertaken by No. 2 Detachment under Mr. M.Z.A. Qureshi on lst November 1939. This line which forms part of levelling line 125, runs from Cuttack along Orissa Trunk Road up to Ichahapuram town, thence along Grand Northern Trunk road to Natavalasa village, from which place it follows the Vizianagram-Natavalasa road to Vizianagram.

The Detachment completed field work on 25th April, 1940.

4. Sohela to Sambalpur, Raipur to Pithora \& Bhadrakh to

 Cuttack.-A levelling Detachment under Mr. A.A.S. Matlub Ahmad commenced work at Sambalpur on 8th November, 1940 and finished observations in the back direction of the two portions Sohela to Sambalpur and Raipur to Pithora of line 117 on 14th January 1941.The Detachment next took up levelling along line 125 (Bhadrakh to Cuttack) in the back direction at Cuttack on 20th January 1941. Starting from Bhadrakh, the line runs along Orissa Trunk Road up to the point where it crosses high level canal, thence it follows canal road on right bank of the above canal up to Chowduār, and thence after crossing Birupa river, it follows the JagatpurPatāmundai road to Jagatpur R.S. (Cuttack). Field work was completed on 18th February, 1941.
5. Probable errors.-The probable errors of the high precision lines completed in 1939-4! are tabulated below :-

Line No.	Name of line		Probable	Probable
systematic error	accidental error			
			feet/miles	feet $/$ miles
117	Raipur-Bhadrakh	..	± 0.00056	± 0.00319
121	Howrah-Bhadrakh	..	± 0.00080	± 0.00284
125	Bhadrakh-Vizianagram	..	± 0.00118	± 0.00337

6. Progress of the new level net.-The levelling under report has added 706 miles to the previously completed mileage of the new level net, thus making the total 10,790 miles. The total mileage of the new level net when completed is estimated to be about $\mathbf{1 5 , 8 0 0}$ miles.

TABLE 1.-Tabular statement of out-turn of work, season 1939-41.

Detachments and lines levelled	Mouths	Distauce levelled			Total		Numberofotationsat whichthe lo-strumentsweresct up	Number of bench-marks connected			
				'rotal	Riscs	Falls		Protected Primary		-	
								$\begin{aligned} & \text { 岂 } \\ & \text { ed } \end{aligned}$	蓫		
		Mls.	\|Mls.		Mls.	fcet	feet		$\stackrel{4}{4}$	0	
No. 1 Detachment.											
$\begin{gathered} \text { Line 117 } \\ \text { (Raipur-Bhad. } \\ \text { rakh) } \end{gathered}$											
Portion Bhadrakh to Sambalpur	$\begin{aligned} & \text { Dec. } 39 \\ & \text { to } \\ & \text { April } 40 \end{aligned}$	209	17	226	9,379	12,310	4,687	5	6	261	
Line 121 (Howrah-Bhadrakh) Portion Balasore to Bhadrakh	$\begin{gathered} \text { Nov. } 39 \\ \text { to } \\ \text { Dec. } 39 \end{gathered}$	44	9	53	356	2,100	937	1	2	76	
No. 2 Detachment.											
Line 125 (BhadrakhVizianagram											
Portion Vizianagram to Jagat. pur (Cuttack)	$\begin{aligned} & \text { Nov. } 39 \\ & \text { to } \\ & \text { April } 40 \end{aligned}$	277	87	364	6,147	9,368	6,411	5	16	418	
No. 1 Detachment.											
Line 117 (Raipur-Bhadrakh)	Nov. 40										
Portion Sambalpur to Sohela and	$\begin{aligned} & \text { to } \\ & \text { Dec. } 40 \end{aligned}$	48	2	50	1,096	1,568	867	1	2	68	
Portion Pithora to Raipur	Dec. 40 to Jen. 41	65	9	74	1,465	1,828	1,073	1	3	68	
Line 125 (Bhadrakh- Vizianagram											
Portion Bbadrakh to Jagatpur (Cuttack)	$\begin{aligned} & \text { Jan. } 41 \\ & \text { to } \\ & \text { Feb. } 41 \end{aligned}$	63	. ${ }^{\text {I }}$	63	610	636	855	..	1	59	

TABLE 2.-Check-levelling.

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original loveling that were connected for check-levelling				Difference of orthometric height above (+) or below (-) starting bench-mark, as deternined by			
No.	Degree shicet	Description		Date of original levelling	Original levelling	$\left\lvert\, \begin{gathered} \text { Check- } \\ \text { lovelling } \\ 1039-41 \\ \text { (unadjusted) } \end{gathered}\right.$	
			miles		feet	feet	feet
At Balasore on line 121.							
78PP	73 K	S.B.M., (Type P) at Balasore	$0 \cdot 00$	1881-83	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
135 (76)	"	Flooring	$0 \cdot 94$	1031	$-\quad 0.273$	- 0.217	$+0.056$
136 (94)	,"	Step	$1 \cdot 15$	1930-31	$+\quad 1.833$	$+\quad 1.843$	$+0.010$
137 (86)		Milestone	$1 \cdot 60$	1924-25, 1927-28	- 0.985	- 0.888	
85		Bridge	$3 \cdot 43$		- $26 \cdot 391$	- $26 \cdot 429$	-0.038
79		Flooring . .	0.94	1881-83	+ 4.176	+ $4 \cdot 166$	-0.010
91 (61)		Step ..	$1 \cdot 45$	1930-31	+ 3.888	+ 3.889	$+0.001$
At Bhadrakh on line 117.							
7	73 K	E.B.M., Bhadrakh	$0 \cdot 00$	1881-83	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
132	"	Iron bolt	$0 \cdot 04$	1930-31	- 3.338	- 3.338	$0 \cdot 000$
131	,,	S. prism	$0 \cdot 04$	"	- 3.674	- 3.669	$+0.005$
130	"	N. prism	$0 \cdot 04$,	- 3.699	- 3.697	$+0 \cdot 002$
129	,,	S.B.M., (Type M), Bhadrakh	$0 \cdot 04$		- $2 \cdot 549$	- 2.545	$+0 \cdot 004$
120	"	Flooring	0.18	,	- 0.425	- 0.414	$+0.011$
At Vizianagram on line 125.							
237 PP	65 N	$\begin{gathered} \text { S.B.M., (Type M) } \\ \text { Vizianagrain } \end{gathered}$	$0 \cdot 00$	$1938-40$	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
18	"	Culvert -.	0.71	1894-95	- 22.838	- 22.853	-0.015
17	"	Culvert	$1 \cdot 71$		- 31.930	- $31 \cdot 951$	-0.021
16	"	Bridge $\quad .$.	1.98		- $38 \cdot 254$	- 36.263	-0.009
15	"	Bridge \quad.	$2 \cdot 76$		- 47.984	- $47 \cdot 093$	-0.009

TABLE 3.-Revision levelling.
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations			Distance from startingbench-mark	Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
No.	$\left\|\begin{array}{c} \text { Degree } \\ \text { sheet } \end{array}\right\|$	Deseription		$\begin{gathered} \text { Date } \\ \text { of } \\ \text { orgigal } \\ \text { levelling } \end{gathered}$	$\underset{\text { published }}{\substack{\text { From } \\ \text { heights }}}$	$\left\lvert\, \begin{gathered} \text { From } \\ \text { revision } \\ \text { 1939-41 } \\ \text { (unadjusted) } \end{gathered}\right.$	
			miles		feet	et	feet
Revision of old line 40 ; new 117 (Raipur-Bhadrakh), portion Raipur to Sambalpur.							
$\begin{aligned} & \overline{173} \\ & (75) \mathrm{PP} \end{aligned}$	64 G	S.B.M., (Type P), Raipur		1935-38	$0 \cdot 000$	0.00	$0 \cdot 000$
172 (97)	640	E.B.M., Kalamat rest-house	$\begin{array}{r} 0 \cdot 00 \\ 161.46 \end{array}$	1891-94	$\left\lvert\, \begin{gathered}0.000 \\ -465 \cdot 594\end{gathered}\right.$	- 465.856	-0.262
91			$167 \cdot 66$		- $494 \cdot 186$	- $494 \cdot 380$	-0.194
182 (88)	"	Step Sambalpur.	168.74 169.74	"	- 508.028	- $508 \cdot 373$	(${ }^{-0.345}$-0.195
	",	I.B.M., Sambalpur..	\| 169.74	",	- 484.982	$-\quad 485 \cdot 177$ -509.044	7-0.195
196 (83)	"	P. ${ }_{\text {ellar }}$ E., Sambalpur	\| $173 \cdot 15$		- 502.986	- $503 \cdot 301$	-0.315
$\left\lvert\, \begin{gathered} 197(89) \\ 84 \mathrm{PP} \end{gathered}\right.$	",		$\left\lvert\, \begin{gathered}173 \cdot 20 \\ 173 \cdot 55\end{gathered}\right.$	3	$\left\lvert\, \begin{aligned} & -498.099 \\ & -511.596\end{aligned}\right.$	$-498 \cdot 369$ -511.809	$\left\lvert\, \begin{aligned} & -0.270 \\ & -0.213\end{aligned}\right.$
		Sambalpur ..	$173 \cdot 55$,	-511.596\|	- 511.809	-0.213
Revision of old lines $75 \mathrm{D}, 41,42,40,75 E, 39,39 B, 36$ and 37 ; new 125 (Bhadrakh-Vizianagram).							
32	73 K	E.B.M., Bhadrakh	0.00	1881-83	$0 \cdot 000$	0.000	0.000
132	"	Iron bolt	0.03	1930-31	- $3 \cdot 338$	- $\quad 3.339$	-0.001
$\left\lvert\, \begin{aligned} & 131 \\ & 130 \end{aligned}\right.$	"		0.03	"	- $\quad 3.674$	- $\quad 3 \cdot 673$	+0.001
$\left\lvert\, \begin{aligned} & 130 \\ & 129 \mathrm{Pr} \end{aligned}\right.$	",	N. prism S.B.M., (Type M	$0 \cdot 03$	",	- 3.699	- 3.698	$+0.001$
		Bhadrakh .	0.03		2.649		$+0.001$
120	"	Tlooring	$0 \cdot 15$	",	0.425	$0 \cdot 420$	+0.005
268 (134)		Bridge	$4 \cdot 65$	",	- 3.577	- 3.759	-0.182
289 (100)	73 L	Bridge	6.50	",	- 0.919	- 1.025	-0.106
101	"	Pillar	$7 \cdot 33$	",	- 8.380	- 8.417	-0.037
108	"	Pillar	11.28	",	+ $1.384+$	+ 1.303	-0.081
107 (108)	"	Bridge	14.89	"	$+\quad 20.212+$	+ 20.097	-0.115
${ }_{109}^{294}$ (108)	"	Pier of anic Monument	18.14	"	 + $\mathbf{6 . 8 3 7}$ + $\mathbf{9 . 2 8 9}$	6.685 $+\quad 0.126$	-0.152
110	",	Lock at head	$18 \cdot 74$	"	+ 19.060	+	-0.170
111	,	Step	19.13	",	+ 10.307 +	+ 16.137	-0.170
112	"	Pillar	19.48	"	+ $9.589+$	+ 9.416	-0.173
114		Bridge	$20 \cdot 69$		+ 7.593+	+ 7 +417	-0.176
139		Bridge	39-49		+ $27.490+$	+ 27.258	-0.232
264 (198)	73 H	Hendl lock	61.63	"	+ $26.028+$	+ 25.812	-0.216
265 (199)	"	Pillar	61.80	"	+ $+19.506+$	+ 19.363	-0.233

TABLE 3.-Revision levelling-(contd.)

Discrepancies between the old and new heights of bench-marks.

Trangerred from degree Sheet 73 L where It was numbered as B.M. 1 .
(Oontinued)

TABLE 3.-Revision levelling-(contd.)
Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling-(contd.)

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
			miles		,	feet	feet
Revision of old lines $75 D, 41,42,40,75 E, 39,39 B, 36$ and 37 ; new 125 (Bhadrakh-Vizianagram)-(contd.)							
$\begin{aligned} & 331(225) \\ & (54) \end{aligned}$	73 H	Milestone	$110 \cdot 84$	1931-32	$32 \cdot 634$	33-131	+0.497
2.24 (.55)		Milestone	111.84		67.362	+ 67.327	-0.035
223 (56)		Milestone	$112 \cdot 84$		21.504	$+\quad 21.476$	-0.028
57		E.B.M., Jankia I.B.	113.30	1894-95	3•793	- 3.818	-0.025
138 (2)	74 E	Milestone	118.89	,,	-1 103.315	$+103 \cdot 357$	$+0.042$
140 (4)		Milestone	$120 \cdot 88$		+ 58.964	$+58.887$	-0.077
8 148	"	E.B.M., Tangi I. B.	124.48		$-38 \cdot 978$	+ 38.941	-0.037
\|148							
		[.E.	. 61		13-771	$+13 \cdot 625$	$-0 \cdot 146$
$\begin{gathered} 159 \\ 1.35 \end{gathered}$		H.S.			1470.785	-1471•730	
$1(0)$	"	E.B.M., Barakul I. $\ddot{\text { B }}$.	$146 \cdot 19$	"	+1470.785 $-\quad 32.428$	- $-142 \cdot 550$	+0.945 -0.122
161 (.34)	"	Stone alnb -	146-20		- $32 \cdot 809$	- 32.779	$+0.030$
$178(.59)$		Pillar	$168 \cdot 25$	"	- 29.259	- 29.488	$-0 \cdot 229$
if (f)	74 A	Well	$178 \cdot 46$	"	$\bigcirc \quad 51 \cdot 259$	$+51 \cdot 184$	-0.075
65 (19)	,,	Bridge	188-58	"	- 15.630	- 15.759	$-0 \cdot 129$
66 (20)	"	Culvert	189-80	,"	†- 10.424	+ 10.327	-0.097
67 (92)	.,	Culvert	$190 \cdot 89$,	+- $22 \cdot 430$	+ 22.344	-0.086
61	.	Rock	$191 \cdot 03$		$+33 \cdot 051$	+- $32 \cdot 996$	-0.055
$\therefore 2$.,	Rock	192.00		+ $52 \cdot 689$	+ 52.634	-0.055
\%3PP	"	S.B.M., (Type M), Berhampur	102-34	"	+ 59.884	+ 59.832	-0.052
761	,	Platform .	193-96	,	+ 14.117	+ 14.036	-0.081
25	,.	E.B.M., Berhampur	193.98	"	+ 10.030	+ 9.967	$-0 \cdot 083$
:01)		Rock	194.03	"	+ 6.727	+ 6.662	-0.065
32		Culvert	202.56		$+\quad 34.822$	$+\quad 34.686$	-0.136
89 (3.3)		Culvert	202•78		+ 23.672	$+23.518$	-0.154
34	,	I.B.M., (Type B), Ichoheswara temple	202-89	.	I- 17.858	+ 17.718	$-0 \cdot 140$
90 (3.5)		Bridge	203.71	",	- 2.514	- $\quad 2 \cdot 705$	-0.191
89 (3)	74 B	Culvert	220-38	,	+ 83.496	+ $83 \cdot 172$	$-0 \cdot 324$
70) (f)	,	Platform	221-00	,	+ 933.480	+ 93.132	$-0 \cdot 348$
71 (f)	"	Culvert	-22-23	,	+ 62.713	+ $62 \cdot 368$	-0, 345
74(1I) PP		I.B.M., (Type B Bātiva R.s.	227-21		- 8.919	- 9.330	-0.411
79 (16)	\cdots	Culvert	233 73	",	+ 45.529	$+45 \cdot 106$	-0.423
80 (19)		Culvert	$234 \cdot 70$		1 - 49.608	+ 49.222	-0, 384
81 (20)	-	Culvert	235.76	"	$t-84.952$	$+84 \cdot 5154$	-0.398

TABLE 3.-Revision-levelling-(concld.)
Discrepancies between the old and new heights of bench-marks.

TABLE 4.-List of triangulation stations connected by spirit-levelling season 1939-41.

TABLE 4.-List of triangulation stations connected by spirit-levelling season 1939-41.-(concld.)

Name of station	Height above mean sea-level		$\begin{gathered} \text { Difference } \\ \text { (Trian.-Lev.) } \end{gathered}$	Remaris
	Spiritlevelling	Triangulation		
	feet	feet	feet	
Bodagiri H.S.	$819 \cdot 478$	815	- 4	Upper mark.
$\begin{array}{llrrr}\text { Lat. } & 19^{\circ} & \underset{2}{2} & 29 \cdot 90 \\ \text { Long. } & 84 & 35 & 7 \cdot 43\end{array}$				
Chandi Kho H.S.	1522.323	1517	- 5	On top of circular protecting pillar.
$\begin{array}{lrrr}\text { Lat. } & 19 & \mathbf{1 9} & 42 \\ \text { Long. } & \mathbf{4 3} \cdot 59 \\ \mathbf{8 5} & \mathbf{9} & \mathbf{9} \cdot \mathbf{4 5}\end{array}$				
Badapad h.s.	$251 \cdot 405$	249	- 2	On E. segmental
Lat. 18 29 $\cdot 49$ Long. 84 8 $3 \cdot 64$				circular pillar.

Chapter II

DEVIATION OF THE VERTICAL

by Mr. B. L. Gulatee, m.a. (Cantab.)

7. Summary.-Both components of the deviation of the vertical were measured at 98 stations in the Punjāb, Baluchistān and N.W.F.P. by Mr. P. S. Shinghal, c.e. The object of this programme was to provide a map of the Geoid in N.W. India.
8. Details of observation.-The instrument and system of work were the same as in previous years except the recording apparatus which was redesigned (see Geodetic Report 1939, Chapter V, page 64). One night's work with the astrolabe was normally done at each station. Greenwich time was obtained in the main from the Rugby 09.55 and 17.55 G.M.T. signals, but at some stations, Nauen 12.01 and Bordeaux 08.01 and 20.01 signals were made use of. The Admiralty corrections received from the Royal Observatory have been accepted for the times of emission.

The geodetic position was obtained by resection from existing trigonometrical data and an astronomical azimuth, sometimes supported by the determination of the distance of a near point by measurement of a short base.
9. Narrative of season's work.-The detachment, consisting of Mr. P.S. Shinghal (observer), 1 Computer, 10 inferior servants, 2 drivers and 1 cleaner left Dehra Dūn in two hired $1 \frac{1}{2}$-ton motor lorries on the 10th of October, 1939, and started work on the 15th at Pārāchinār in the Kurram Agency. After completing the line Pārāchinār-Isākhel-Manzai, observations for 3 nights were carried out at Multān to determine the Personal Equation. The party then went into Baluchistān and completed the line Quetta to D.G. Khan. Another check observation was made at Multān and work was continued on the Western and Northern districts of the Punjāb up to Jammu. The remainder of the season's programme comprised of 33 stations in the Punjāb and Punjāb states. This was completed by the 23rd March and the detachment returned to Dehra Dūn on the 25th March, 1940. Roads were generally good except in the sandy tracts of Miānwāli district and Bahāwalpur State. Each of the two lorries covered a distance of 5,350 miles, and only one station had to be reached by train. The Detachment kept good health throughout. The wireless set behaved well, but over a period of 17 days from the 13th of January, Rugby signals were not received. During this interval and on a few other occasions, recourse had, therefore, to be taken to Bordeaux and Nauen signals.

Reg.No 3 0.0.0.1936(C.0)s.1-400-410-38,370-39,315-44.

Reg No. 4 0.0.0. 1936 (C.0) $8.1 \approx 400-410-38,425-39,355-40,315-44$.

Note:- The number of the deflection station corresponds with that allotted to it in chapter II, Table I. In this table a minus sign indicates easterly or
northerly deflection and the plus sign a westerly or southerly deflection.
ro. Personal equation.-The figures obtained for personal equation were as follows :-

Dehra Dūn.

	s		s	
Sept. 29	-0.15	Nov. 13	-0.03	
Sept.	-0	-0.16	Nov. 14	+0.02
Oct.	2	-0.18	Nov. 15	-0.10
Oct.	3	-0.15		
Oct.	7	-0.10		
Oct.	8	-0.10		

Multān. Dehra Dūn 1940.

Dec. 24	$\stackrel{s}{-0.18}$
0.	March 26
-0.08	

Dec. $25-0.11 \quad$ March $28-0.19$
March $29-0.04$
April $2-0.14$

The considerable variation of personal equation between Dehra Dūn and Multān may be due to the varying pen lag that seemed to have started from station 6. This lag was measured for the different stations and has been allowed for in assessing the personal equation at the various stations. The results cannot be considered very satisfactory and at two stations, the lag was so large that they had to be rejected.

A further consideration of this case may be found possible at some more convenient time later.
II. Probable errors.-The average p.e. of a determination of latitude was $\pm 0.31^{\prime \prime}$; of local time $\pm 0^{9.016}$; and of the time keeping of the mean "Clock" between wircless time and star time $\pm 0^{s} \cdot 012$.
12. Laplace stations.-Longitude observations on two nights each were made at the old azimuth stations of Dera-Din-Panah S. (Great Indus Series, 39 J), Jaoli H.S. (N.W. Himalaya Series, 43 G) and Akbar S. (Jogi-Tila Meridional Series, 44 F). The P.V. deflections and errors of azimuth developed in the triangulations are given in the table below :-

Laplace station					P. V.	$\begin{aligned} & \text { ection } \\ & \text { st) } \end{aligned}$	Deduced error in triangulation
					$\underset{\text { longitude }}{\text { By }}$	$\underset{\text { Byimuth }}{\text { By }}$	
1					2	3	4
Lat. Long.							
					$+10^{\prime \prime} \cdot 8$	$+12^{\prime \prime} \cdot 5$	-1×0
Jãoli H.S.	33	17	73		- 2.8	$+1.8$	- 3.0
Akbar S .	30	54			$-3 \cdot 5$	+ 0.7	-2.5

13. Geoidal section.-The stations observed during this season are marked on Chart IV. The drawing of geoidal contours is postponed to a later convenient date, when the charts VII and VIII of Geodetic Report 1936, showing the geoid and compensated geoid with respect to International Spheroid will be brought up to date by incorporating the results of observations taken in 1938-40.

DEFLECTION STATIONS

Eighth Addendum to Table 1 of "Supplement" to G.R. Vol. VI.

TABLE 1

		Observed at	$\left.\begin{gathered} \text { Helght } \\ \text { in } \\ \text { feet } \end{gathered} \right\rvert\,$	International Spheroid Deflection		Calculated Deflections. Hayford System		Calcuiated Deflectiong. Uncompensated Topography	
				Meridian	p.v.	Meridian	P.v.	Morldian	P.v.
1071		Baikal h.s.	1830	+ ${ }^{\prime \prime}$	- ${ }^{\prime \prime} \cdot 4$	- ${ }^{\prime \prime} 1$	- ${ }^{\prime \prime} \cdot 0$	"	"
$\longdiv { 1 0 7 2 }$	\bar{D}	Dhoktalia	1875	+14.4	-2.5				
1073		Ghogiat ..	655	+11.4	+ 0.8				
1074		Gūnia T.S.		$\|+9 \cdot 1\|$	$-1 \cdot 1$				
$\overline{1075}$		Bāla T.S.	677	$+11.0$	+ $4 \cdot 0$				
$\overline{1076}$	44 E	Hūjan T.S.		+12.1	$+4 \cdot 1$				
1077		Sāngla Hill ..		+8.4	+1.7				
1078		Khurnawala T.S.	623	$\|+1 \cdot 0\|$	$+1 \cdot 2$				
1079		Rirīne T.S.	607	-2.4	$-5 \cdot 1 \mid$				
$\overline{1080}$		Bārāla \quad T.S.	588	- $4 \cdot 1$	-6.3				
102		Akbar \quad S.		+0.2	-5.9\|				
1081		Kadianwala T.S.	561	$\|-0.5\|$	-3.8				
$\overline{1082}$		Pirghani T.S.	557	$\|-2 \cdot 6\|$	$-3 \cdot 6$				
1083		$\begin{array}{r} \text { Akbar-da-Bunga } \\ \text { T.S. } \end{array}$	538	$\|+1.0\|$	-2.8 \mid				
1084		Khäi Mosque .	500	$\|+0.2\|$	-2.1				
1085		Chisti Tomb ..	470	$\|+2 \cdot 2\|$	$-3 \cdot 2$				
$\overline{1086}$		Unnis Chak ..	460	$\|+1.7\|$	-4.2				
1087		Tamiwali-Bhindi	460	$\|+4 \cdot 5\|$	$-3 \cdot 7 \mid$				
1088	390	Bakhidera T.S.		$\|+3 \cdot 8\|$	$-0.0 \mid$				
1089		Godri T.s.		$\|+2 \cdot 0\|$	$-5 \cdot 9 \mid$				
1090		Dete Khan S.	397	+3.5	-3•9				
$\overline{1001}$		Pirhar T.S.	348	$\|+3 \cdot 4\|$	-2.7				
44		Paphra T.s.	$\overline{316}$	+5.4	$+2 \cdot 2$				
$\overline{1092}$		$\begin{array}{r} \text { Dhaggu-Sanerī } \\ \text { wâla } \end{array}$	300	$\|+3 \cdot 5\|$	+8.9				
1093		Gangah T.S.		$+\mathbf{0 . 9}$	$1+14 \cdot 3$				

Cotomis 4: Eroept at G. T. and other triangulation atationa all heighta are epproximate and correet to within 10 to 20 feet.

Chap. II.]
DEFLECTIONS 1939-40

Note 1-Minus sign denotes N. or E. deflection of the plumb-line.

TABLE 1

Chap. II.]
DEVIATION OF THE VERTICAL
DEFLECTIONS 1939-40-(contd.)

Note:-Minus aign denotes N. or E. deflection of the plumb-line.
(Continued)

TABLE 1

$\begin{aligned} & \dot{8} \\ & \text { 药 } \\ & \text { 䨗 } \end{aligned}$		Observed at	$\begin{array}{\|c\|c\|} \hline \text { Helght } \\ \text { feet } \end{array}$	International Spherold Dettections		Calculated Defioctions. Hayford System		Calculated Deflec-tlons.UncompanatedTompography	
				Meridina	P.V.	Meridian	P.v.	Meridian	P.V.
1116	43 G	Malpur	1800	\| ${ }^{\prime \prime}$ ' ${ }^{\prime}$	-12.0	"		"	"
	G	Jōoli H.S.	1912	$\dagger+2 \cdot 7 \mid$	-5.3				
1117	G	Kalriàla 8.	1758	+7.3	-4.8			,	
1118	44 J	Faridkot T.S.	683	$\|+3.7\|$	$+1.3$	-0.9	$1 \cdot 0$		
1119	\mathbf{J}	Mukant Singhwala T.S.	698	+ $4 \cdot 0$	$+1.3$				
1120	\bar{J}	Banawala T.S.	624 1	$\left.\right\|^{+4 \cdot 2}$	-0.2				
1121	F	Karni Khera . .		+4.3	-6.5				
$\overline{1122}$	$38 \mathrm{P}$	Isa Khel Bārā̄deri	700	$\|+12 \cdot 8\|$	$+4 \cdot 9$				
1123		Arsala -.	850	$\|+12 \cdot 1\|$	+3•2				
1124	${ }^{-} \mathbf{P}$	Kathgarh ..	600	$\|-2 \cdot 9\|$	$-3 \cdot 3$				
1125		Yārik bungalow	666	-1.6	-1.6				
1126		Pezo \quad.		$1+2 \cdot 1$	$-2 \cdot 4$				
$\sqrt{127}$		Tajori e.		$\|-0.7\|+$	+13.0				
$\overline{1128}$	\bar{L}	Manzai	1550	$\|-5 \cdot 1\|+$	$+20 \cdot 0$				
1129		$\begin{gathered} \text { Khaira Khèl } \\ \text { bungalow s. } \end{gathered}$	1177	$+5 \cdot 8$	$+13 \cdot 3$!	
1130	\mathbf{I}_{1}	$\text { Gsmbila } \mathrm{s} \text {. }$	935	$\|+6.5\|+$	$+8.4$				
1131		Benna fort s.	1287	$1-0.6$	$+15 \cdot 5$				
1132		Kurrem Garhi Fort NW. corner	1416	- 2.7	$+19 \cdot 4$				
$\overline{1133}$	$\overline{\mathbf{K}}$	Shawa (Post) .	2000	$\mid-6 \cdot 1$	+22.3				
1134		Manduri (Poot)		$-5 \cdot 6$	+15.4				
1135		Arawali Fort ..	3650	1-3.6	$+\mathbf{8} \cdot 1$				
1130		Amalkot ..	4350	- $-3 \cdot 9$	$+13.7$				
1137	- \mathbf{K}	Pārechinār (mileatone) h.s.	5739	-10.7	∓ 12.5				
	30 J	Churatta		$1+\mathbf{0 . 2}$	$+17 \cdot 4$				
1130		Tombi	670						

DEFLECTIONS 1939-40-(contd.)

Notr 1-Minus sign denotes N. or E. deflection of the plumb-line.
(Contimued)

TABLE 1

		Observed at	$\begin{gathered} \text { Helight } \\ \text { ing } \\ \text { feet } \end{gathered}$	International Spheroid Deflection		$\begin{gathered}\text { Calculated Deflec- } \\ \text { tions. } \\ \text { Hayford Systom }\end{gathered}$		Calculated Defleo tions. Uncompensated Topography	
				Meridian	P.V.	Meridian	P.v.	Meridian	P.v.
1140	39 K	Rnkhi Mithwnn	1325	" ${ }^{\prime \prime}$	" $+35 \cdot 9$	"	"	"	"
1141	G	Khar	5600	-4.4	$1+24 \cdot 7$				
119	\bar{F}	Rakni \quad.	3590	-3.6\|	$\underline{+15 \cdot 3}$				
$11+3$	\bar{F}	Rarkhan village peak	4235	-0.2	$\dagger+167$				
1144	\mathbf{F}	Saredhaka ${ }^{\text {a }}$ -	4425	+ + - ${ }^{\text {c }}$	$+9.3$	-3.2	+ $3 \cdot \overline{6}$		
1145		Tor	4120	$\mid-4.1$	$\dagger+3 \cdot 6$				
$\overline{1146}$		Wahar ..	4040	$\mid-\overline{0} 5$	$\dagger^{+3 \cdot 0}$				
1147	B	Loralai	4700	\|-7.9	$1+2 \cdot 6$				
$\mid 1 \overline{1} 48$		Kach Ahmaqzai	5760	-6.2	$1+4 \cdot 9$				
1149	34	Chinjan \quad -	7250	1-5.0	$1+6 \cdot 5$				
150,		Speraragha .	7850	1-7.0	- -0				
1151		Yusuf Kach	7000	- $-3 \cdot 6$	-7.9				
1152	$\overline{\mathbf{N}}$	Gwal	5750	$\mid-2 \cdot 6$	$\left.\right\|^{-8.2}$				
1153		Bostan	5150	$\dagger+3 \cdot 1$	1-7.5				
$\overline{1154}$		Baleli	5230	$1^{+0 \cdot 6}$	- ${ }^{-3 \cdot 4}$				
$115 \overline{5}$		Sariab -.	$5 \overline{660}$	+ $2 \cdot 6$	$\left.\right\|^{-2 \cdot 1}$				
1156	$39 \mathrm{~L}$	Lalgoshi T.S.		$\left.\right\|^{-1.3}$	$1+12 \cdot 5$				
1157	\mathbf{H}	Mandadalari T. S		$\left.\right\|^{-1 \cdot 1}$	${ }^{+12 \cdot 4}$				
1158	\mathbf{H}	Kasmor T.S.	245	$+1 \cdot 3$	$+7 \cdot 9$				

Colems 4: Except at G.T. and other triangulation stations all heights are approximate and correct to within 10 to 20 feet.

DEFLECTIONS 1939-40-(concld.)

EVEREST'S SPHEROID					号碼¢
Latitude	Azimuth	Name of station observed for Azimuth	Deflectlons		
			Meridian	P.v.	
'"	- " "		"	"	
A 295651.8 A 701305.3			-14.8	$+40.2$	1140
G 295706.6					
			-9.4	$+29 \cdot 1$	1141
G 295610.5 G 69 5852.7					
A $300237 \cdot 5 \mid A C 69550.5$			-8.6	+19.8	1142
			- 5.3	+21.2	1143
			- 4.4	+14.1	1144
G 30 28 36.5					
			- 9.3	+8. 6	$1114 \overline{5}$
A 30 24 $25 \cdot 5$ A 68 55 29.4			-10.7	$+8.2$	1146
			-13.0		1147
			-11.4	$+10 \cdot 4$	1148
			-10.2	+12.2	1149
A 303222.7			-12.2	+ 0.9	1150
			- 8.7	-1.8	1151
G $303709 \cdot 0 \mid O \quad 67 \quad 2620 \cdot 1$					
			-7.7	$-2 \cdot 0$	1152
G $303136 \cdot 3 \mid O A 671218 \cdot 1$					
G $\quad 3018 \quad 10 \cdot 4$					1154
A $300610 \cdot 0{ }^{\text {A }}$			$2 \cdot 3$	+4.3	1155
G $300612 \cdot 3 \mid Q 666562.9$					
			- 5.8	+16.9	1156
$\begin{array}{llll\|llll} \hline \mathrm{A} & 28 & 42 & 06 \cdot 15 & A & 69 & 52 & 19 \cdot 27 \\ G & 28 & 42 & 11 \cdot 62 & G & 69 & 62 & 03 \cdot 20 \end{array}$			-6.5	$+16.9$	1157
			- 3.0	+12.6	1158

Note:-Minus sign denotes N. or E. deflection of the plumb-line.

by Mr. B. L. Gulatee, m.a. (Cantab.)

14. Summary.-During the field season 1939-40, observations were made at 15 stations in South Burma and 1 station in the Andaman Islands. Mr. M. N. A. Hashmie, b.A., was the observer in charge of the detachment. He toured with 8 khalāsis.
15. Narrative.-The detachment left Dehra Dūn on 17-11-1939 and returned on 18-1-1940. Transport was by rail and locally hired lorries in the northern part of the work; a Government launch was hired from Mergui for the journey down the coast to Victoria Point, up the Packchai river, and to Court Island, where landing was made with some difficulty.

The Marconi Wireless receiver R.P. 11 was used to receive the Rugby, Bordeaux and Nauen time signals on $16 \cdot 00,15 \cdot 7$ and $16 \cdot 55$ kilocycles respectively. The reception was satisfactory. A short wave set was also taken as an emergency measure, but necessity never arose for its use.

Heights were obtained from existing data on $1^{\prime \prime}$ maps by planetable resection with vertical angles and by spirit-levelling.

Computations in recess were done by Mr. Hashmie assisted by two computers.
16. Observations at Dehra Dun.-The times of vibration at Dehra Dūn at the beginning and end of the season and the adopted mean times of vibration are given in Table 1. The mean times of vibration by pairs are as follows :-

Pair	Nov. 1939	Jan. 1910	Apparent change
	$0^{8} \cdot 50792035$	$\stackrel{3}{0 \cdot 50792108}$	9 $+7 \cdot 1 \times 10^{-7}$
AB	(1) 92432	92346	-8.6
CB	92035	92079	+4.4
Mean	$0 \cdot 50792167$	0 505792177	$+1.0 \times 10^{7}$

This shows that no change of any consequence has occurred in any pendulum. The mean of the times of vibration at Dehra Dūn has, therefore, been adopted for the whole period.
17. Differences in times of vibration.-The mean differences for pairs of pendulums are given in Table 2.

Reg No. 320.0 .0 .1939 (C.0)S. $1-425-40-355,315-44$.
18. Values of g.-The times of vibration of individual pendulums and the deduced values of g for each pair are given in Table 3.
19. Anomalies.-The Free Air, Bouguer and Hayford anomalies on the Helmert 1901 spheroid are given in Table 4 and Hayford anomalies referred to the International Spheroid in Table 6. It will be seen that the largest anomaly occurs at Port Blair. Table 5 gives Normal Warp anomalies (see Geodetic Report 1939, Chapter II para 11).

Contours of Hayford anomalies and the normal warp anomalies are given in Charts VI to VIII. In the light of these results, the crustal structure lines have been shown up to the coast line of Sumatra in Chart IX.

We see, that the downwarp lies over the sedimentaries of the Andamans. The red positive axis can be continued with the help of Vening Meinesz's chart in Geographical Journal 1931. It seems to pass through the middle of Sumatra through Java and Flores on to the Banda Sea.

TABLE 1.-Times of vibration at Dehra Dūn, season 1939-40.

Adopted mean times of vibration.

Pair Pendulum	AC_{A}	AB_{A}	${ }_{\text {B }}^{\text {B }}$	${ }_{\text {A }}{ }^{\text {B }}$	$\underset{0}{\text { A }}$	${ }_{(130}^{80}$
		\checkmark	- 1			
Mean	$0 \cdot 5079217$	0-507 0242	0-507 9217	0.5070236	0.5079197	0-5079104

TABLE 2.-Mean differences of pairs of pendulums, season 1939-40.
(The unit is $10^{-7} \mathrm{sec}$.)

Station No.	A-C	v	Station No.	C-B	v	Station No.	B-A	v
549	$+8.6$	- $5 \cdot 6$	550	-1.5	$+8.7$	551	-2.0	$+0.4$
552	+ 6.3	$-7 \cdot 9$	553	$-14 \cdot 2$	- 4.0	554	-1.2	$+1.2$
555	$+8.7$	-5.5	556	+ $2 \cdot 7$	+12.9	557	$+3 \cdot 7$	$+6.1$
558	$+15.8$	$+1.6$	559	+ 0.1	$+10 \cdot 3$			
			560	+ 1.8	$+12 \cdot 0$	561	-8.9	-6.5
562	$+20.0$	$+5.8$	563	$-24 \cdot 4$	-14.2	564	+ $4 \cdot 0$	+ 6.4

TABLE. 3.-Mean times of vibration and deduced values of g, season 1939-40.

$\begin{aligned} & \text { Station } \\ & \text { No. } \end{aligned}$	Pendulums			Mean	g
	A	B	C		
		s	s		
549	0.508 1340		0.5081331	$0 \cdot 5081336$	978.243
550		0.508 0703	$0 \cdot 5080701$	$0 \cdot 5080702$	$978 \cdot 486$
551	0.508 0868	$0 \cdot 5080866$		$0 \cdot 5080867$	978.435
552	0.508 0611		0.508 0605	0.508 0608	978.523
553		0. 5080804	0.508 0790	$0 \cdot 5080797$	$978 \cdot 450$
554	0.508 0750	0.508 0749		0.508 0750	$978 \cdot 481$
555	$0 \cdot 5080857$		$0 \cdot 5080849$	0.508 0853	978.429
556		0.508 1258	$0 \cdot 6081261$	0.508 1260	978-271
557	0.508 1377	0.508 1380		0.508 1378	978-238
558	0.508 1486		0.508 1471	$0 \cdot 5081478$	978-187
559		0.5081444	$0 \cdot 5081444$	0.5081444	978-200
560		$0 \cdot 5081318$	0.508 1320	$0 \cdot 5081319$	978.248
561	$0 \cdot 5081287$	$0 \cdot 5081278$		0.508 1283	$978 \cdot 275$
562	$0 \cdot 5081249$		0.5081229	$0 \cdot 5081239$	$978 \cdot 280$
563		$0 \cdot 5081153$	0.5081129	0.508 1141	978-317
564	0.508 0960	0.508 0964		$0 \cdot 5080962$	978-399

TABLE 4.-Modern gravity observations in India (Additions in field season 1939-40).

No.	安	Station	Date	菫	Latitude N.	Longitude E.	g	$g-\gamma_{\text {A }}$	$g-\gamma_{\text {B }}$	$g-\gamma_{0}$
				feet	- ' "	, "	$\mathrm{cm} / \mathrm{sec}{ }^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	cm/sec ${ }^{\text {a }}$	cm/sec ${ }^{2}$
549	87 A	Port Blair	231139	87	114030	924618	978-243	$1+\cdot 010$	+. 008	-. 053
550	850	Letpadan	291139	52	174705	954502	978-486	-.021	-. 023	-. 017
-51	86 I	Diamond Island	31239	51	155138	941636	978-435	$+\cdot 025$	$+\cdot 023$	-. 003
552	94 C	Nyaunglebin	61239	40	175649	964345	978-523	+. 007	+.006	+. 023
553	94 H	Moulmein	91239	69	162843	973731	978-450	+.011	+. 009	+.019
554	94 G	Shwegun	111239	44	170953	973848	978-481	$+.005$	$+\cdot 004$	$+.020$
555	94 L	Kaw Kareik	151239	53	163310	981432	978-429	-. 015	-. 017	+.005
556	96 L	Court Island	211239	3	115715	975922	978-271	+.020	$+\cdot 023$	+.012
557	96 I	Bokpyin	241239	10	111545	984552	978-238	$+.012$	$+\cdot 012$	$+\cdot 008$
558	96 K	Victoria Point	271239	88	95835	983310	978-187	+-010	$+\cdot 007$	+.002
559	96 J	Marang	291239	85	102610	984645	978-200	+.009	+.006	$+.002$
560	95 P	Tenasserim	2140	42	120530	990048	978-248	-. 005	-. 006	-. 004
561	95 L	Mergui	$4 \quad 140$	95	122621	983607	978-275	+-014	+.011	+.009
562	95 K	Palauk	$6 \quad 140$	33	131607	983739	978-280	-. 019	-.020	-. 013
563	95 J	Tavoy	8140	113	140417	981208	978-317	- $\cdot 007$	-.011	-. 002
564	95 E	Ye	$10 \quad 140$	9	151430	975105	978-399	+ $\cdot 014$	$+\cdot 014$	$+.022$

Note :-This table is the ninth addendum to Table 2 of the Supplement to Geodetic Report, Vol. VI.

TABLE 5.-Values of normal warp anomalies.

Station No.	Corrections to $g-\gamma \mathrm{CH}$		Normal warp anomaly	Station No.	Corrections to $g-\gamma_{\mathrm{CH}}$		Normal warp anomaly
	Compensation	Spheroid S. of I. II			Compensation	Spheroid S. of I. II	
549	- 1	+20	-34	558	-2	$+19$	+19
550	-1	+23	+ 5	559	-3	$+19$	$+18$
551	0	+22	+19	500	-3	$+20$	$+13$
552	-2	$+23$	+44	561	-1	+20	+28
553	-1	+22	$+40$	562	- 5	+20	+ 2
554	-2	+22	$+40$	583	- 4	+21	$+15$
555	-6	+22	$+21$	564	-3	-1-21	+40
556	0	+20 +10	+32				
557	-2	$+19$	+2\%				

TABLE 6.—Values of $g-\gamma_{C I}$
(The unit is 1 mgal .)

Station No.	$g-\gamma_{\text {cI }}$	Station No.	$g-\gamma_{01}$	Station No.	$g-\gamma_{01}$
549	-72	565	-13	561	-9
550	-34	556	-7	562	-31
551	-22	557	-10	563	-20
552	+5	558	-17	564	+3
553	0	559	-17		
554	+3	560	-22		

Note:-This table is the seventh addendum to Table 6 of Chapter IV, Geodetio Report Vol. VIII.

Chapter IV

COMPUTING OFFICE AND OBSERVATORIES

by Mr. B. L. Gulatee, m.a. (Cantab.)
COMPUTING OFFICE

20. General.-The outbreak of the war seriously interfered with the normal activities of the Computing Office, which had to remain mainly occupied with the production of data required by the Army. The following paras give a summary of work carried out.
21. Hayford anomalies.-Out of the about 230 remaining stations (see Geodetic Report 1939, para 15), Hayford deflection anomalies have been computed at 70 stations.
22. Gravity anomalies for the Burma Oil Company.Assistance has again been given to the Burma Oil Company in the computation of gravity anomalies.
23. Lambert Conical Orthomorphic Projection Tables.-The tables for $1 / 2 \mathrm{M}$ and smaller scales on Lambert Conical Orthomorphic projection with origin in latitude $24^{\circ} \mathrm{N}$. and central scale factor 0.9804 were computed for a new edition of Auxiliary Tables, Part I (see Geodetic Report 1939, para 18, last but one sub-para).
24. Plumb-line Deflections in N. W. India, the Punjab and Punjab States.-Computations were completed of the 98 stations observed by the latitude and longitude Detachment of No. 14 Party, see Chapter II.

OBSERVATORIES

25. Latitude variation.-Mr. J. B. Mathur has completed the three-year programme of variation of Latitude at Agra. Table I shows the Right Ascension and the periods of observation of each pair. The group differences together with the closure errors are given in Table 2. The closure errors are very consistent and maintain the same signs during the 3 cycles, thus pointing to a systematic origin.

The latitude variation is tabulated in Table 3. It is noteworthy that there is a close agreement in the results of the 3 years, and that the variation remains large as in the case of Dehra Dūn.
26. Miscellaneous.-The usual magnetic, seismographic and meteorological observations have been carried on. The levelling party's invar staves were standardized as usual and repairs and adjustments were carried out to levels and theodolites used by parties in the field.

TABLE 1.—Right Ascensions and period of observation of pairs

Group-pair	Mean R.A. of Group		Year		
	Evening	Morning	1937-38	1938-39	1939-40
	$h \quad m$	$h \quad m$			
le, $2 m$	620	$10 \quad 22$	$(6,7)$ Jan. to $(2,3)$ March	$(3,4)$ Jan. to $(27,28)$ Feb.	$(3,4)$ Jan. to $(25,26)$ Feb.
$2 e, 3 m$	$10 \quad 22$	1421	$(5,6)$ Maroh to (29, 30) April	$(2,3)$ March to $(30,31)$ April	$(2,3)$ March to $(29,30)$ April
$3 \mathrm{e}, 4 \mathrm{~m}$	$14 \quad 21$	$18 \quad 25$	$(4,5)$ May to (18, 19) June	$(5,6)$ May to (17, 18) June	$(3,4)$ May to (19, 20) June
$4 \mathrm{c}, 5 \mathrm{~m}$	$18 \quad 25$	$22 \quad 22$	$(22,23)$ June to $(30,31)$ Aug.	$(22,23)$ June to $(1,2)$ Sept.	(21, 22) June to (31, 32) Aug.
$5 e, 6 m$	$22 \quad 22$	$2 \quad 26$	$(2,3)$ Sept. to $(31,32)$ Oct.	$(6,7)$ Sept. to $(29,30)$ Oct.	$(7,8)$ Sept. to $(30,31)$ Oct.
$6 e, 1 m$	$2 \quad 26$	$6 \quad 20$	$(4,5)$ Nov. to (2, 3) Jan.	$(1,2)$ Nov. to (30, 31) Dec.	$(3,4)$ Nov. to $(26,27)$ Dec.

TABLE 2.-Group Differences

	$1937-38$	$1938-39$	$1939-40$	Mean	Adjusted
$1 e-2 m$	+0.13	+0.11	+0.12	+0.12	+0.09
$2 e-3 m$	+0.18	+0.22	+0.18	+0.19	+0.16
$3 e-4 m$	+0.13	+0.11	+0.02	+0.09	+0.07
$4 e-5 m$	-0.09	+0.03	-0.13	-0.06	-0.08
$5 e-6 m$	-0.04	-0.11	-0.05	-0.07	-0.09
$6 e-1 m$	-0.18	-0.19	-0.02	-0.13	-0.15
\mathbf{C}	+0.13	+0.17	+0.12	+0.14	0.00

TABLE 3.-Latitude variation at Agra as derived from the mean declination errors of the three cycles (1937-39).

[^0]: - Excluding No. 1 Party, No. 20 (Cantt.) Detachment, No. 2 Drawing and Forest Map Olfees, Printing, Photo-Zinco, Stores and Workshop Sections and War (training) Section.

